

# Comparison of three different types of particle-track detectors

<u>I. Ambrožová<sup>1</sup></u>, M. Lužová<sup>1,2</sup>, M. Sommer<sup>1,2</sup>, V. Bradnová<sup>3</sup>, P. Zarubin<sup>3</sup>, S. Kodaira<sup>4</sup>, O. Ploc<sup>1</sup>

<sup>1</sup> Nuclear Physics Institute of the CAS, Prague, Czech Republic
<sup>2</sup> Faculty of Nuclear Sciences and Physical Engineering CTU, Prague, Czech Republic
<sup>3</sup> Joint Institute for Nuclear Research, Dubna, Russia
<sup>4</sup> National Institute of Radiological Sciences/QST, Chiba, Japan











# Introduction

- information about individual particles (type, energy, direction...)
- detectors visualizing particle's track plastic nuclear track detector (PNTD), nuclear track emulsion (NTE), Timepix, fluorescent nuclear track detector (FNTD) ...
- irradiation at HIMAC, various ions under different angles
- comparison of all three detectors on individual track basis
- properties of each method (duration of analysis process, detection efficiency, spatial resolution, spectroscopic properties)

## **Plastic nuclear track detectors**

- latent track -> chemical etching -> optical microscope
- track parameters -> V -> LET of individual particles, incident angle
- Harzlas TD-1 (12 x 12 mm<sup>2</sup>), etching 18h in 5N NaOH at 70°C





# **Nuclear track emulsions**

- high sensitive photographic film used for detection of 3D trajectory of charged particles
- latent image -> chemical development -> optical microscope





# **Nuclear track emulsions**

- BR-2 from Slavich Company (Pereslavl-Zalessky, Yaroslavl region, Russia)
- thickness 50  $\mu$ m; 10 x 10 mm<sup>2</sup>
- evaluation process: swelling 15 min, developer 15 min, bath 15 min, washing 15 min, fixer 30% 60 min, lowering of fixer concentration 110 min, washing 20 min, alcoholic drying 15 min, air drying
- sensitivity to alphas and heavier ions of all energies, protons from 0.1 – 4000 MeV, electrons, muons, charged pions...

# Timepix

- semiconductor pixel detector, 256 x 256 pixels
- Timepix (Medipix 2), Si, 300 μm, 14 x 14 mm<sup>2</sup>
- sensitive to X-rays, electrons, heavy charged particles
- clusters -> identification of particles, deposit energy, incident angle





Granja et al., 2018; https://doi.org/10.1016/j.nima.2018.08.014

## Irradiation

- PNTD + NTE + Timepix
- HIMAC, January 2018
- Fe 500 MeV/u, Ne 400 MeV/u, O 400 MeV/u
- 2 angles (90 and 60 degree)





# **Analysis – PNTD and NTE**

- High-speed microscope HSP-1000 (objective lens 20x)
- Software HspFit



# Analysis – Timepix

- Pixet
- ToT (Time-over-Threshold) mode
- frame acquisition time (50 ms for Fe; 100 ms for Ne and O)
- readout dead time about 20 ms





#### Fe500

TED



NTE



 $30 \ \mu m$ 



Timepix



about 600 μm



#### Ne400

TED



NTE





Timepix



#### 0400







about 400  $\mu m$ 

#### **Results – PNTD and NTE**



#### **Results – PNTD and NTE**

| Exposure   | PNTD | NTE | matched | Efficiency (NTE)<br>[%] | Area [cm <sup>2</sup> ] |
|------------|------|-----|---------|-------------------------|-------------------------|
| Fe500, 90° | 318  | 301 | 283     | 89                      | 0.7                     |
| Fe500, 60° | 381  | 353 | 346     | 91                      | 0.8                     |

- defects
- nonuniform thickness
- low magnification of HSP-1000 for analysis of NTE

## Discussion

• analyses of tracks in various depths of NTE



#### Discussion



#### Discussion

• microscope with higher magnification (objective lens 60x)



#### **Results – PNTD and Timepix**







# **Results – PNTD and Timepix**

- less tracks in Timepix (deadtime, overlapping)
- uncertainties of tracks' coordinates about 100 μm (Timepix), larger dimensions of tracks
- difficult to match individual tracks

| Exposure   | PNTD | Timepix | Efficiency (Timepix)<br>[%] | Area<br>[cm2] |
|------------|------|---------|-----------------------------|---------------|
| Fe500, 90° | 490  | 172     | 35                          | 1.1           |
| Fe500, 60° | 486  | 199     | 41                          | 1.0           |
| Ne400, 90° | 660  | 477     | 72                          | 1.3           |
| Ne400, 60° | 572  | 379     | 66                          | 0.9           |
| O400, 90°  | 805  | 524     | 65                          | 1.3           |

# **Results – PNTD and Timepix**

• linear energy transfer, incident angle

| Ion, angle | LET <sub>ref</sub><br>[keV/µm] | LET <sub>PNTD</sub><br>[keV/μm] | LET <sub>Timepix</sub><br>[keV/μm] | angle <sub>PNTD</sub> |
|------------|--------------------------------|---------------------------------|------------------------------------|-----------------------|
| Fe500, 90° | 198                            | 211 ± 7                         | 80 ± 16                            | 80 ± 2                |
| Fe500, 60° | 198                            | 208 ± 10                        | 88 ± 17                            | 59 ± 2                |
| Ne400, 90° | 31                             | 33 ± 1                          | 29 ± 5                             | 83 ± 2                |
| Ne400, 60° | 31                             | 29 ± 2                          | 35 ± 6                             | 60 ± 2                |
| O400, 90°  | 20                             | 26 ± 2                          | 22 ± 5                             | 83 ± 2                |

## Summary

| PNTD                                                             | NTE                                                 | Timepix                                        |
|------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|
| nearly tissue-equivalent                                         | 3D image of individual tracks; light sensitive      | active device (provide time information)       |
| about 250 USD (sheet of 30 x 30 cm)                              | about 4300 USD (1 m <sup>2</sup> )                  | about 10 kEuro                                 |
| chemical treatment<br>(etching)<br>18 hours                      | chemical treatment<br>about 5 hours                 | -                                              |
| optical microscope<br>(scanning)<br>several minutes              | optical microscope<br>(scanning)<br>several minutes | -                                              |
| data processing (semi-<br>automatic analysis)<br>about 1-2 hours | data processing (manual)<br>several hours           | data processing (automatic)<br>several minutes |

## Summary

| PNTD                                                                 | NTE                                                                                                                                                | Тітеріх                                          |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| almost 100% efficiency for<br>perpendicularly incident<br>heavy ions | more than 90% detection<br>efficiency for heavy ions<br>(defects on the surface)                                                                   | readout dead time (loss of some particles)       |
| critical angle of detection                                          | difficulties to analyze<br>perpendicularly incident<br>particles and particles with<br>lower LET (low magnification<br>of used system)             | register particles coming from<br>any direction  |
| spatial resolution several $\mu m$                                   | spatial resolution several tenths of $\mu m$                                                                                                       | spatial resolution several tens of $\mu\text{m}$ |
| detection of particles with<br>LET above about 7 keV/µm              | larger LET range of detection,<br>but method of determination<br>of LET needs to be develop;<br>problems of uniformities<br>within various batches | volcano effect                                   |

#### **Future work**

- upgrade of microscopes for analysis of NTE (HSP-1000 lens with higher magnifications; KSM-1 – automatization of analysis)
- determination of LET in NTE
- study of volcano effect
- irradiation of detectors with lower fluence and for more angles

# Acknowledgement

This work was supported from

- European Regional Development Fund Project CRREAT (CZ02.1.01/0.0/0.0/15\_003/0000481)
- BECQUEREL Project (02-1-1087-2009/2020)
- HIMAC project H377