

European Radiation Facilities Network ERFNet

Livio Narici

Department of Physics – University of Rome Tor Vergata – Tor Vergata, Rome, Italy

for the ERFNet collaboration

WRMISS 2018 – Tsuruga, Japan, Sept 4-6, 2018

University of Rome Tor Vergata Via Orazio Raimondo,1 00173 Roma Italy

Att: Prof. Livio Narici narici@roma2.infn.it Responsible Contracts Officer Ms Georgia Ekatomati(IPL-PSS) Tel. (31) (0)71 565 5616 Fax (31) (0)71 565 5662 E-mail: georgia.ekatomati@esa.int

Noordwijk, 27 November 2017

Subject: Request for Quotation RFQ/3-15226/17/NL/GE

 Title:
 EXPERT : EUROPEAN RADIATION FACILITY NETWORK STUDY

 (ERFNET)
 (ERFNET)

Ref: Item no. 17.339.04 Item: E1X2-006 European Radiation Facility Network ESA/IPC (2017)69

ERFNet European Radiation Facilities Network ESA RfQ/3-15226/17/NL/GE

INFN

GSI

ThalesAlenía

Feasibility Study

Prepared by Livio Narici University of Rome Tor Vergata

February 2nd, 2018

WRMISS 2018 - Tsuruga, Japan, Sept 4-6, 2018

European Space Research and Technology Centre Keplerlaan 1 2201 AZ Noordwijk The Netherlands T +31 (0)71 565 6565

F +31 (0)71 565 6040

www.esa.int

estec

Background Needs

Research on radiation effects on living tissues, radiation environment in space habitats, as well as development of radiation protection technologies and systems, needs:

- combined and coordinated approaches to exploit knowledge. radiobiology, space systems engineering, life support and habitability, materials science and technology, computing science, space mission and operations engineering, ...
- integrated approaches for implementation of physical and virtual facilities: a network of facilities.
 - demonstrators of Habitat infrastructural elements

• human exploration oriented irradiation facilities should provide adequate development environment for most intended applications to test advanced design solutions and operations in the frame of radiation mitigation in space habitats

Key Requirements

- 1) broad access to related information, including data;
- 2) smart support in the modelling and design of experiments;
- 3) optimized use of the facilities involved;
- 4) modular structure, easy to be upgraded;
- 4) synergy with similar realities around Europe and worldwide;
- 5) a risk model, to be used as radiation mitigation optimization tool;
- 6) applicability to space flight (i.e. whenever possible the moduli could be seeds for similar moduli to be use during deep space missions)

This presentation is going to briefly mention the approach we are going to use to study the ERFNet feasibility and the needs it should respond to. We are therefore seeking suggestions to further improve the approach. We are also proposing a synergy between ERFNet and WRMISS

ERFNet Objectives

- Support users in the design and optimization of their scientific and technological activities in the field of radiation applied to human space exploration.
 - a single access point to the information including links to the leading institutions in the field
 - an easy access to the information to

i) assess the feasibility, novelty and relevance of a new concept,ii) design and optimize the best strategy for its development,iii) provide indications how to optimally test it.

- guided links to relevant irradiation and habitat (physical and/or virtual) facilities
- Suggestions for needed and optimized upgrades of these facilities
- A smart system to manage all radiation-related inputs, to suggest strategies to optimize the habitat, and optimal irradiation validation strategies, etc.

ERFNet Objectives

ERFNet

- Use radiation risk as optimization parameter
 - develop a structure to efficiently pair the radiation risk to the optimization routines
 - maintaining the highest degree of upgradability to be able to follow future developments
- Study, in the ERFNet developing stage, a risk assessment model, based on the knowledge and expertise in Europe
 - accordingly and in synergy with similar worldwide efforts
 - providing a first input for the optimization endpoints
- Be easy to access and user friendly,
 - to facilitate newcomers in the field,
- Provide a valid knowledge-base and physical tools to the experienced researcher.

Knowledge Gaps

ERFNet

Important Reference Documents

Recommendations for ESA-supported ground-based research on space radiation protection

ESA UNCLASSIFIED - For Official Use

estec

European Space Research and Technology Centre Keplerlaan 1 2201 AZ Noordwijk The Netherlands T +31 (0)71 565 5656 F +31 (0)71 565 6040 www.esa.int Application of the FAIR Facility to Space Radiation Research

Final Report

DOCUMENT

ASI Supported Irradiation Facilities (ASIF) initial assessment report

Players for ERFNet Feasibility Study

SCIENTIFIC ADVISORY BOARD

Dr. Emmanouil Detsis, FR, Dr. Speranza Falciano, IT, Dr. Daniel Heyndericks, BE,

- ESF Science Officer, Sci. PM for H2020 and ESA of ESF PI for the ASI-INFN agreement for ASIF, member of the INFN Executive Council
- Dr. Daniel Heyndericks, BE, DH Consultancy, Belgian Institute for Space Aeronomy, PM of several radiation projects (ESA).
- Dr. Guenther Reitz, DE, Former director of the department of Radiation Biology of DLR , Chairman WRMISS
- Dr. Edward Semones, US, Head of Space Radiation Analysis Group JSC NASA

WRMISS 2018 – Tsuruga, Japan, Sept 4-6, 2018

Workflow - Worklogic

ERFNet concept

The core nodes of the ERFNet are:

- the facilities for
 - irradiation testing
 - habitation-related development
- the ERFNet Knowledge Base (EKB) as the key knowledge management system

Another point of view: COMPUTATIONAL MODELS

The ERFNet Integrated Approach

"One of the ERFNet pillars is the integrated approach for implementation in full scale of **demonstrators** of **selected Habitat infrastructural elements**, providing the adequate **physical** and/or **virtual** development environment for most intended applications, to test advanced design solutions and operations."

Therefore, once developed, ERFNet should provide ...

- 1) A single access point to the information related to radiation and human exploration:
 - scientific and technological free data,
 - guided links to the leading institutions in the field
 - guided links to the pertinent existing databases.
- 2) Habitat models, physical and/or virtual mock-ups and simulators of the habitation elements focused on radiation protection-related features: shielding and sheltering,
- 3) A smart system to manage the optimization of the user questions, handling the radiation-related inputs
- 4) Suggestions for optimal irradiation validation strategies and support for consequent 'best' access to the irradiation facilities

5) An easy upgradable risk model modulus, to provide risk assessments as EKB optimization endpoints. *also support, in synergy with similar worldwide efforts, for the development of a novel advanced space radiation risk assessment model, based on the knowledge and expertise in Europe, and worldwide.*

Time Chart

				July 13 th 2018									July 2019						Jan 2020		
w	P	institution			1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	110	URTV	Project Coordination / Management, EKB Coordination																		
	120	TASI	Management/Administration DSH simulator work																		
	130	INFN	Management / Administration radiation facilities work																		
	140	GSI	Management/Administration Risk Model work																		
	200	TASI	Knowledge gaps & Stakeholder needs																		
	310	URTV	State of the art of the EKB																		
	320	TASI	State of the Art of the DSH simulator					1													
	330	INFN	State of the Art of Radiation Facilities																		
	340	GSI	State of the Art of the Risk Model																		
	400	URTV	ERFNet Concept																		
	510	URTV	Feasibility of the Knowledge Base																		
	520	TASI	Feasibility of the DSH simulator																		
	530	INFN	Selection and optimization of core facilities																		
	535	URTV	Facility upgrades implementation design																		
	540	GSI	Concept of Risk Model																		
	600	URTV	EKB Demonstrator scenario																		
	710	URTV	Knowledge Base Demonstrator																		
	720	TASI	DSH simulation for EKB demonstrator																		
	730	INFN	radiation test for EKB Demonstrator																		
	740	GSI	Risk Algorithm for EKB demonstrator																		
	800	URTV	Final recommendations																		
	Leg	end:																			
	ко	: К	ick Off							- ↓	,										- ↓
	ESC	DAR E	RFNet State of the ART Review					Co A D		FC					-	-					ED.
	ECI	K: El	KFNet Concept Keview	K			E	SOAR		ECI	۲.				E	FK					٢P
	EFI EP-	C El	RENET FEASIBILITY REVIEW												v	Vork	shop				
	- FP:	FI	nai Presentation																		

- Suggestions (questionnaire)
- Coordination/collaboration with WRMISS

Thank you for your attention

WRMISS 2018 – Tsuruga, Japan, Sept 4-6, 2018