

An Update on the Timepix2

Lawrence Pinsky Physics Department University of Houston

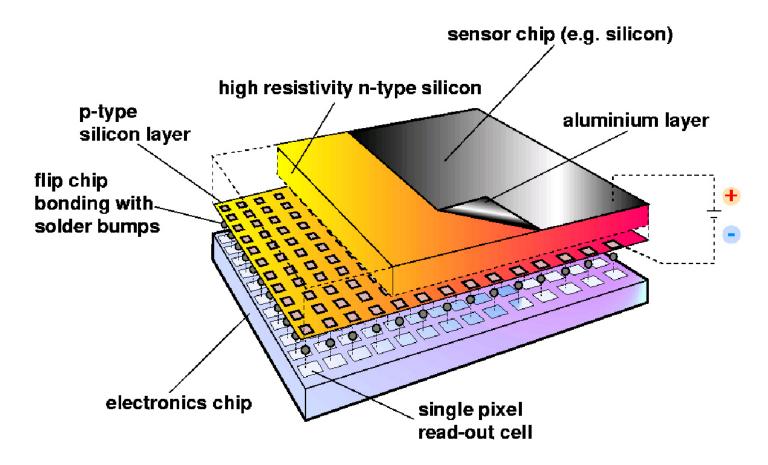
The Principal Acknowledgments

L. Tlustos^{1,3,4}, T. Campbell-Ricketts^{1,2}, S. George^{1,2}, and the Medipix2 Design Team (M. Campbell³, W. Wong^{3,6}, X. Llopart-Cudie³, R. Ballabriga-Sune³, T. Poikela^{3,} and J. Alozy³) And NASA Space Radiation Analysis Group

- ¹ Physics Department, University of Houston, Houston, TX, USA <pinsky@uh.edu>
- ² NASA SRAG, Johnson Space Center, Houston, TX, USA
- ³ Medipix Project, CERN, Geneva, Switzerland
- ⁴ XIE, Frieburg, Germany
- ⁵ Currently: University of Geneva, Geneva, Switzerland

- Medipix (1)—Formed in the early 1990's and ended with the formation of Medipix2...
 - Medipix Chip—64 x 64 170μm pixel Photon Counting (PC)
- Medipix2—Formed in the late 1990's (still active)
 - Medipix2 MXR—256 x256 55μm 2-Threshold PC Frame (250μm IBM)
 - Timepix (2006)—256 x256 55μm TOT <u>or</u> TOA & PC Frame (250μm IBM)
 - Timepix2 (2018)—256 x256 55µm TOT+TOA & PC Frame (135µm TSMC)
- Medipix3—Formed in 2006 (still active)
 - Medipix3, Medipix3.1...
 - Medipix3RX (~2012)—256 x256 55μm pixel, Charge Summing PC
 - Timepix3 (2014)—256 x256 55μm pixel TOT+TOA & PC Frame & Data-Driven Readout... (135μm IBM)

Medipix4—Formed in late 2016 (just starting up)



 Medipix4 (PC) and Timepix4 (TOT+TOA & PC) Frame & Data Driven (65μm TSMC) Pixel size and number TBD...

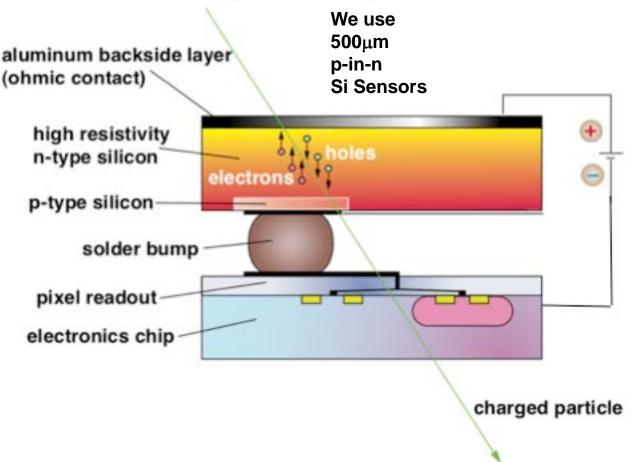
WRMISS-2018 – Update on the Timepix2 Pinsky – Sept. 6, 2018 – Tsuruga, Japan

Hybrid Pixel Detectors

Detector and electronics readout are optimized separately Bonding is done with the FlipChip ® process...

Learning. Leading.

WRMISS-2018 – Update on the Timepix2 Pinsky – Sept. 6, 2018 – Tsuruga, Japan



medipix

Schematic Cross Section of a Hybrid Pixel Detector for Penetrating Charged Particles

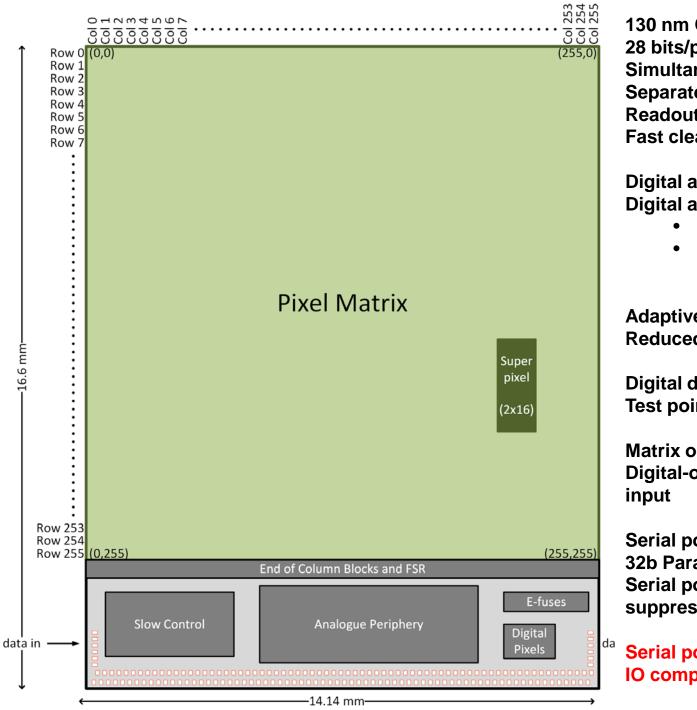
Time-Over-Threshold (TOT)

- This is a "Wilkison" type Analog to Digital Convertor (ADC)
- A "Pulse-Shaping" circuit regularizes the input current into a pulse whose pulse-height is proportional to the total charge collected over the shaping time.
- The input voltage pulse is matched to a Threshold discriminator to output a digital "1" level for the duration of the time that the input is above the Threshold.
- The input voltage is discharged by a constant current during which a clock is counted to determine the digital value for the input charge.

Time-Of-Arrival (TOA)

- The discriminator output described in the TOT method above, triggers a counter to begin counting as soon as the digital level changes to "1".
- The end of the Frame stops the TOA counters. (A Common Stop Time to Digital Convertor (TDC).

The clock frequency limits the resolution in both cases...



UPDATE ON Timepix2

On behalf of the Medipix Design Team of CERN

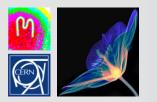
WRMISS-2018 – Update on the Timepix2 Pinsky – Sept. 6, 2018 – Tsuruga, Japan

130 nm CMOS 28 bits/pixel Simultaneous ToT and ToA Separate ToT and ToA clock freq. Readout dead-time-free modes Fast clear

Digital and analogue test pulses Digital and analogue pixel masking

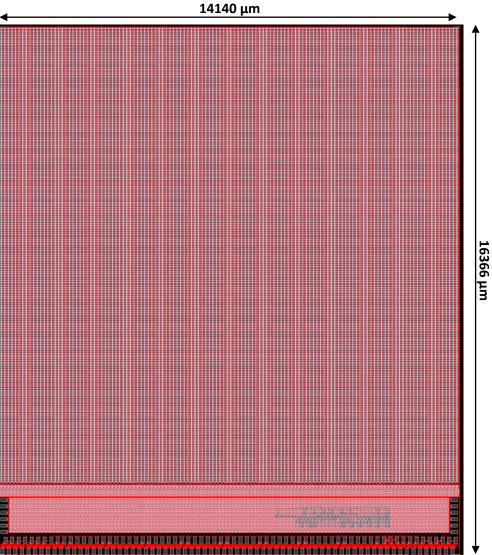
- ROI
- coarse pitch bump bonding

Adaptive frontend gain Reduced threshold dispersion


Digital diagnostics modes Test points in analogue frontend

Matrix occupancy monitor Digital-only pixels with wirebond input

Serial port (full frame) 32b Parallel port (full frame) Serial port (zero column suppression)


Serial port daisy-chaining IO compatible with TSVs

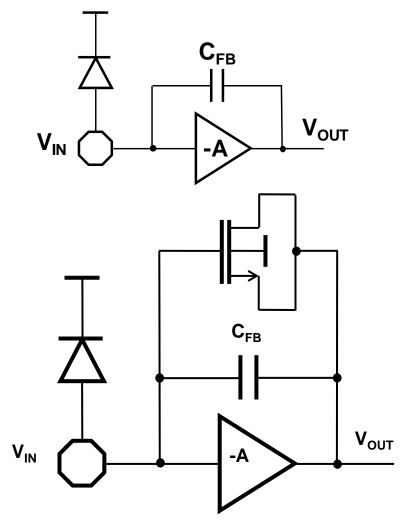
Timepix2

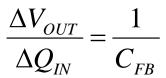
	Timepix	Timepix2
Size [µm]	14111 x 16120	14140 x 16366
Pixel size	55 x 55 μm²	55 x 55 μm²
Pixel pads size	20 x 20 (octagon)	12 x 12 (octagon)
Pads pitch [µm]	120	200 (100 staggered)
Number IO Pads	127	150
TSV ready	NO	YES
Differential pads	LVDS	SLVS

X. Llopart

ų	
UNIVERSIT	
Learnin	

Parameter	Value			
Technology	SMC 130nm CMOS			
Number of pixels	56 x 256 @ 55 um pitch			
Analog front-end size	~55 x 14 um			
Analog supply voltage	1.2 V			
Detector capacitance	50 fF			
Front-end gain	Linear, possibility to configure for "logarithmic" gain mode only in positive polarity			
Detector polarity	Both Electron collection: • Leakage current compensation optimal (I _{DET} >I _{KRUM}) • Non-monotonicity of the ToT vs Qin Hole collection • Leakage current limited (I _{DET} <i<sub>KRUM/2) • Logarithmic gain mode available</i<sub>			
Leakage current	Electron collection: Up to 12nA/pixel Hole collection: 2nA/pixel			
Minimum threshold	~600e- 2.16 KeV			
Peaking time	~100 ns (Adaptive gain=0) ~200ns (Adaptive gain=1)			
Operating temperature	-20°C <t<70°c< td=""></t<70°c<>			
Power consumption	5uA/pixel @1.2V i.e. ~165mW/cm² (low power mode)			
Analog Power masking	Available per pixel(2.6 ms to load configuration bits)			

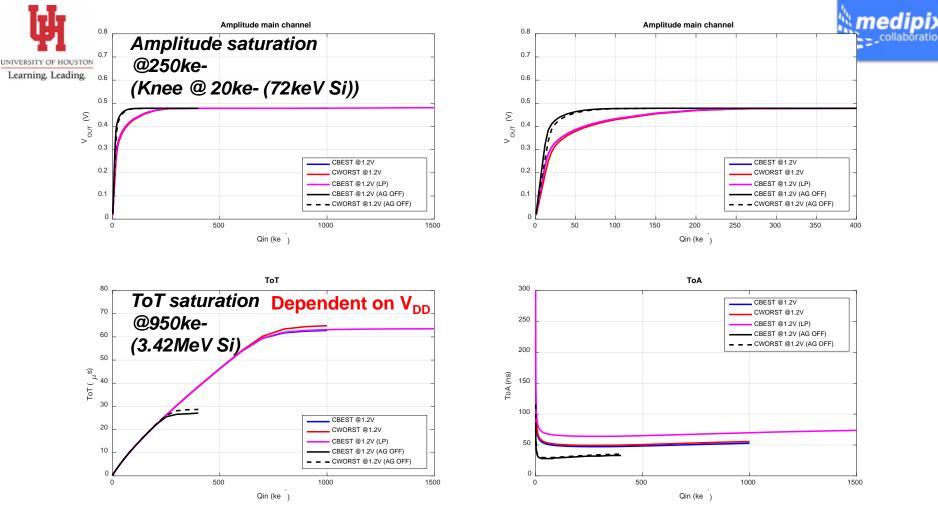

- Adaptive gain OFF
 - Gain ~25mV/ke-, Noise ~60e- r.m.s., Threshold dispersion ~30e- r.m.s. Minimum threshold ~400e-, Peaking time ~100ns
- Adaptive gain ON
 - Gain ~20mV/ke-, Noise ~55e- r.m.s., Threshold dispersion ~40e- r.m.s. Minimum threshold ~400e-. Peaking time ~200ns
- Monotonic ToT amplitude up to 3.42MeV (Si)


R. Ballabriga

DÍX ration

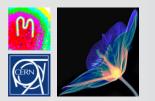
Voltage-dependent feedback capacitance

Learning. Leading.


When the transistor is active, the feedback capacitance is ~125fF (Dimensions transistor 1/10)

M. Manghisoni et al. "Dynamic Compression of the Signal in a Charge Sensitive Amplifier: from Concept to Design" IEEE Trans. Nucl. Sci. Vol. 62, No. 5, 2015

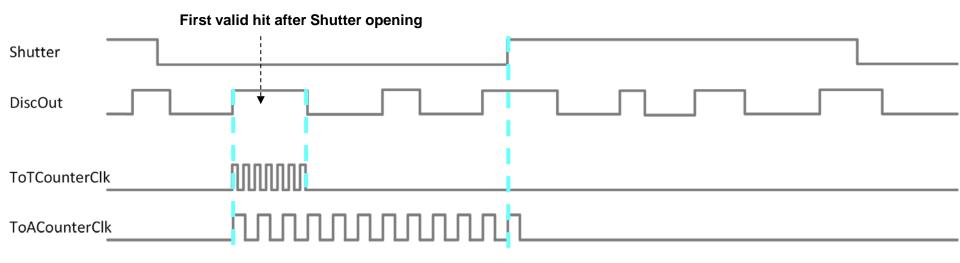
WRMISS-2018 – Update on the Timepix2 Pinsky – Sept. 6, 2018 – Tsuruga, Japan



Amplitude, ToT and ToA for the front end with adaptive gain ON, front end power supply 1.2V

(a low power mode for the discriminator is also considered and has an impact on the ToA (discriminator propagation delay))

```
(Gain: ~20mV/ke- (CBEST), ~16mV/ke- (CWORST))
```

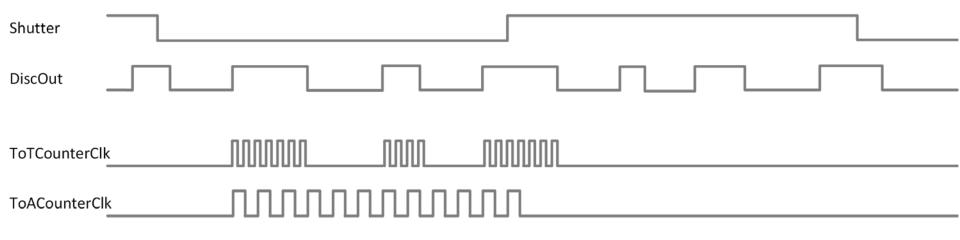



Pixel Digital Operating Modes

28 bits/pixel: 2 x 4b chains 2 x 10b chains

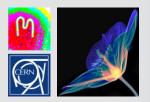
Mode Name	Description	1 st Counter	2 nd Counter	
ToT10/ToA18	Simultaneous ToT and 1 st hit ToA*	10-bit ToT	18-bit ToA	
ToT14/ToA14	Mode options (programmable): 1) 1 st hit or integral ToT 2) Overflow (wraparound) of ToA counter	14-bit ToT	14-bit ToA	
ContToT10/Even t4	Continuous read/write ToT Mode options: 1) 1 st hit or integral ToT (programmable) 2) Supplementary 4-bit eventing counting (readout optional)	10-bit ToT 4-bit #Events	10-bit ToT 4-bit #Events	
ContToT14	Continuous read/write ToT Mode option: 1 st hit or integral ToT (programmable)	14-bit ToT	14-bit ToT	
ContToA10	Continuous read/write 1 st hit ToA	10-bit ToA 14-bit ToA	10-bit ToA	
ContToA14	ContToA14		14-bit ToA	
ContEvent10	Continuous read/write event counting	10-bit #Events	10-bit #Events	
ContEvent14	Continuous read/write event counting	14-bit #Events	14-bit #Events	

Mode Name	Description	1 st Counter	2 nd Counter
ToT10/ToA18	Simultaneous ToT and 1 st hit ToA*	10-bit ToT	18-bit ToA
ToT14/ToA14	Mode options (programmable): 1) 1 st hit of integral ToT 2) Overflow (wraparound) of ToA counter	14-bit ToT	14-bit ToA



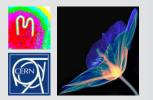
WRMISS-2018 – Update on the Timepix2 Pinsky – Sept. 6, 2018 – Tsuruga, Japan

Mode Name	Description	1 st Counter	2 nd Counter
ToT10/ToA18	Simultaneous ToT and 1 st hit ToA*	10-bit ToT	18-bit ToA
ToT14/ToA14	Mode options (programmable): 1) 1 st bit of integral ToT 1) Overflow (wrapareand) of ToA counter	14-bit ToT	14-bit ToA



Mode Name	Description			1 st Counter		r	2 nd Counter		
	Continuous re Mode options: 1) 1 st hit or integral To 2) Supplementary 4-bi (readout optional)	「(programm	nable)		oit ToT ≇Even			0-bit ToT it #Events	3
	Continuous re Mode option: 1 st hit or i (programmable)		ōΤ	14-k	oit ToT	-	14	4-bit ToT	
ShutterCounterSel									
DiscOut									
ToTCounterClk0				11					
ToTCounterClk1							∩∩		
EventCounterClk0									
EventCounterClk1					1	Π		Π	

Power Consumption in the Matrix

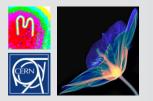

- Analogue:
 - 5 µA/pixel @ 1.2 V
 - Unused pixels can be powered down to a few nA
 - With all 65536 pixels powered up: <400 mW

• Digital:

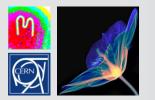
- 0.24 mW/superpixel during open Shutter in simultaneous ToT/ToA mode with 100 MHz ToTClk and 100 MHz ToAClk, assuming sparse activity and superpixel clock gating enabled
- ToT and ToA clocks can run at lower frequencies
 - ToAClk is output from a clock divider taking ToTClk as input
- The clocks in a double column are disabled when all pixels in the double column are masked
- Full matrix digital power with sparse activity and 100 MHz clocks: <500 mW

Total: <900 mW for the full matrix assuming sparse hits and both clocks @ 100 MHz

• ~2 W for the full matrix in cases of full occupancy (not relevant to dosimetry)



Maximum Frame Rates


With a 100 MHz DCLOCK_IN:

	Full frame, serial port		Full frame, p	parallel port	Zero column suppression, serial port		
		Max		Max		Max	
#	Time to Read	framerate	Time to Read	framerate	Time to Read	framerate*	
bits	[ms]	[fps]	[ms]	[fps]	[ms]	[fps]	
10	6.55	153	0.2	4883	0.41	2441	
14	9.18	109	0.29	3488	0.57	1744	
28	18.4	54	0.57	1744	1.15	872	

*The framerate in ZCS mode depends on the matrix occupancy. The rate reported here is the theoretical maximum, which assumes only 16 columns of data are output from the chip.

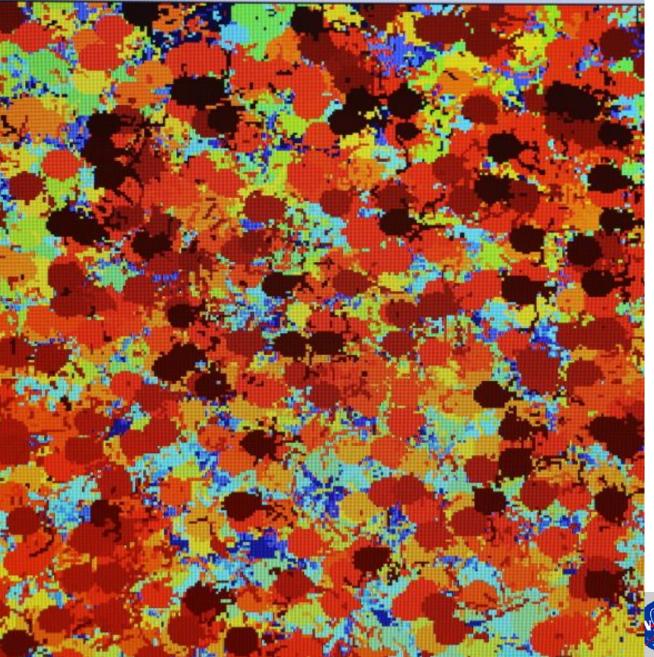
- 1. Improved Front-End TOT range and stability...
- 2. Simultaneous TOT an TOA (10 ns)...
- 3. Stable performance with 100 MHz clock...
- 4. Stable and linear internal digital and analog test pulses...
- 5. TSV capable (no wirebonds & secure mounting)...
- 6. 28-bit (Fungible) output buffer...
- 7. Improved DAC stability...
- 8. Multiple continuous operational modes...
- 9. Can use Timepix sensors...
- **10.** Bonus—8 Digital Pixels to couple external devices

Status

- Six wafers (~106 chips) are at CERN now, and they are undergoing probe testing to verify performance against the design simulations...
- If no issues are found, they will be sent to have Si Sensors bump-bonded later this month.
- Interfaces are being prepared at ADVACAM and IEAP.
- …Expect functional devices by mid to late Nov,(2018)…

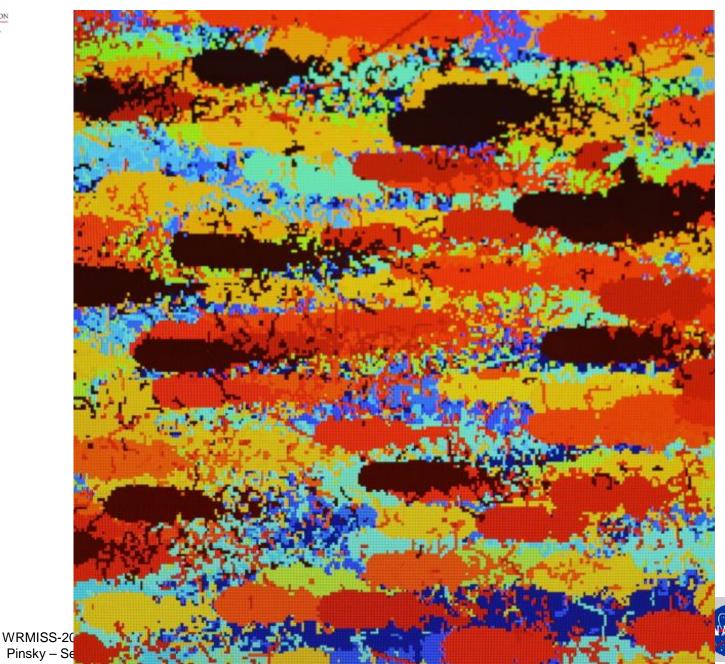
Timepix2 and Beyond

- Eventually, the Timepix2 chips should be able to replace the Timepix chips...
- It is also may be possible to modify the HERA units to accept the Timepix2,
- Eventual "Deep Space" monitors may take advantage of the Timepix2 or even Timepix4 chips...
- Current efforts are also focusing on developing Timepix2 or Timepix3-based dedicated neutron monitors...



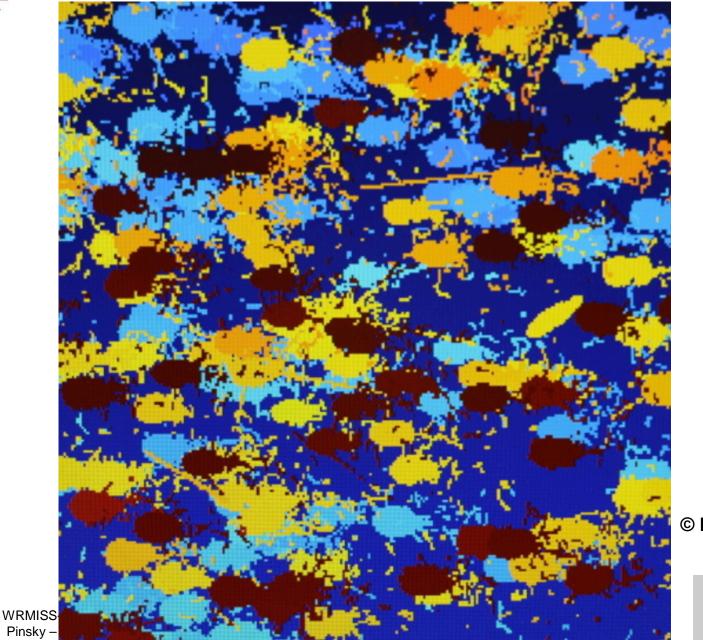
Timepix3 TOArt

HIMAC Fe Beam @ 45°


© L. Pinsky 2016

Timepix3 TOArt

HIMAC Fe Beam @ 75°

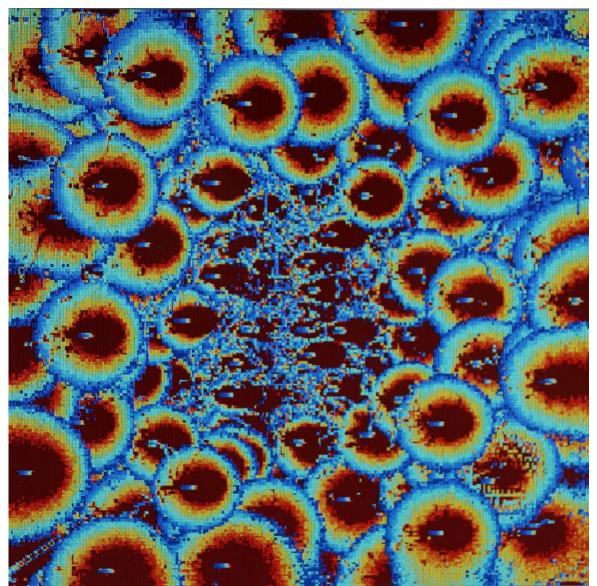

© L. Pinsky 2016

24

Timepix3 TOArt

© L. Pinsky, 2016

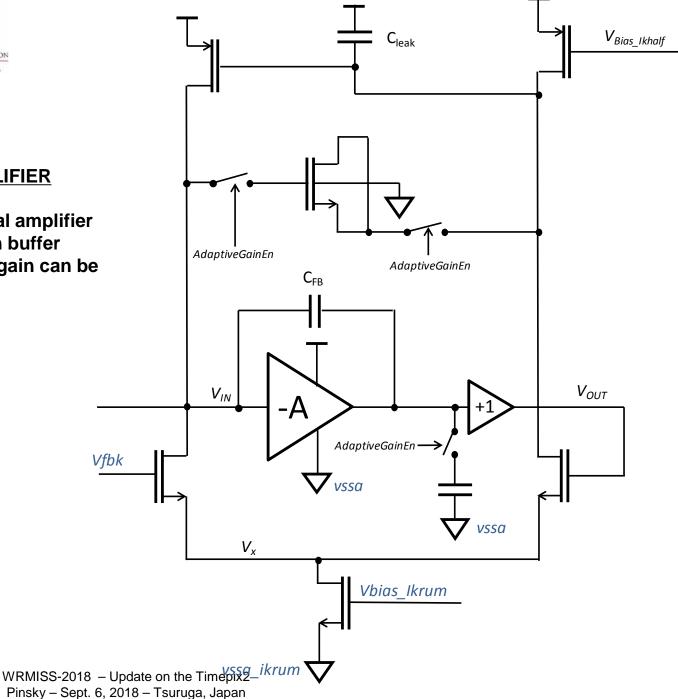
Extract From a Picture On Display at the Apple Store in Geneva

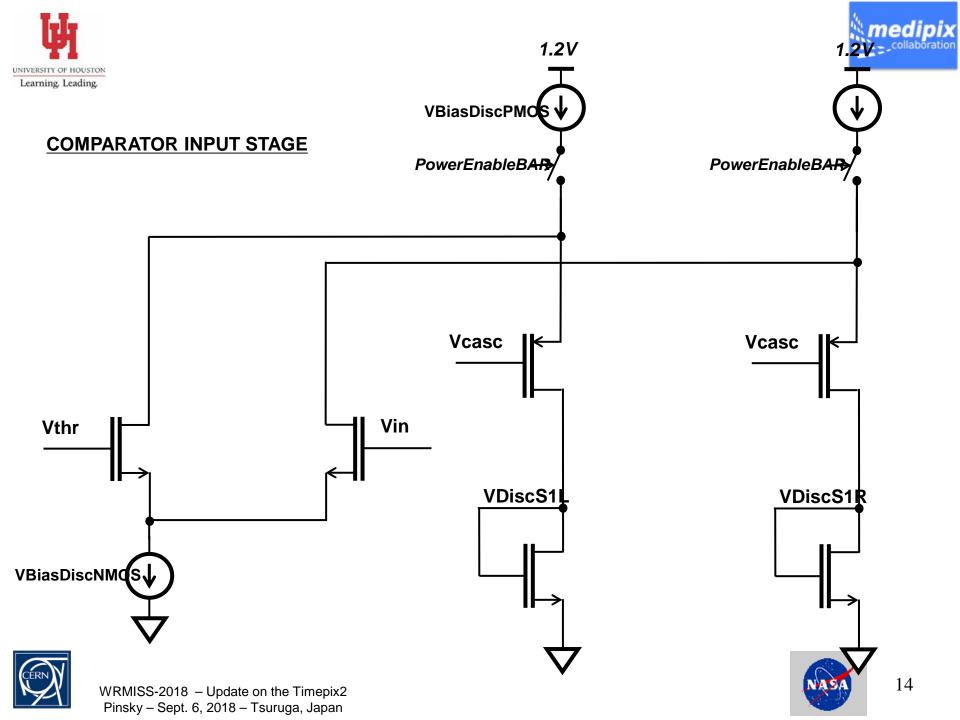

Academic non-profit Fair Use

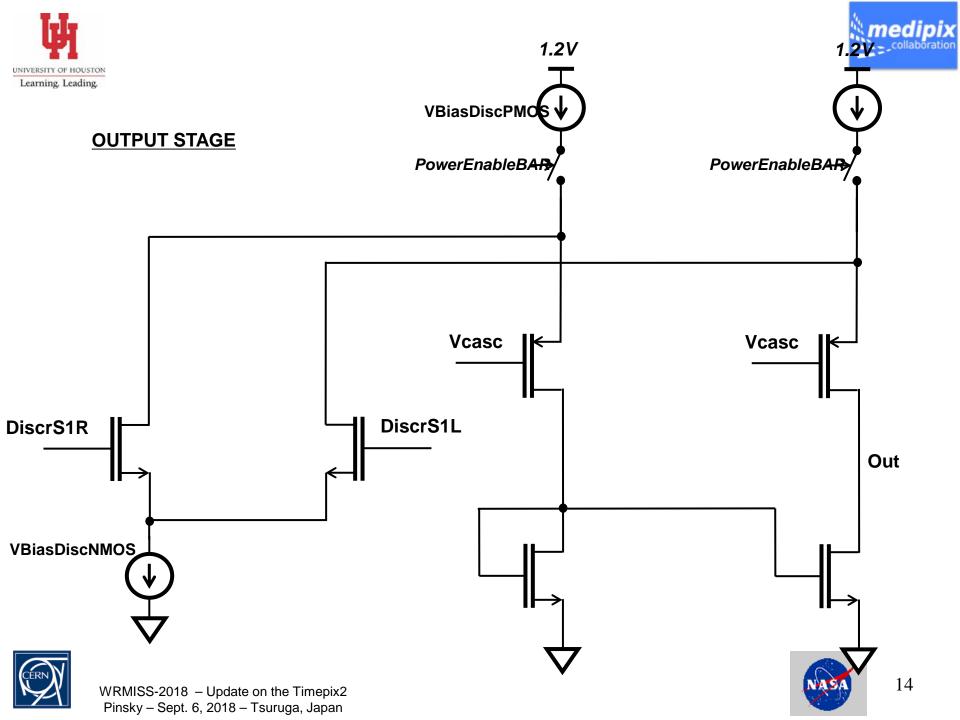
Timepix3 P-in-N 500 μm Si Sensor w/ Low Bias V In an Fe Beam @ HIMAC

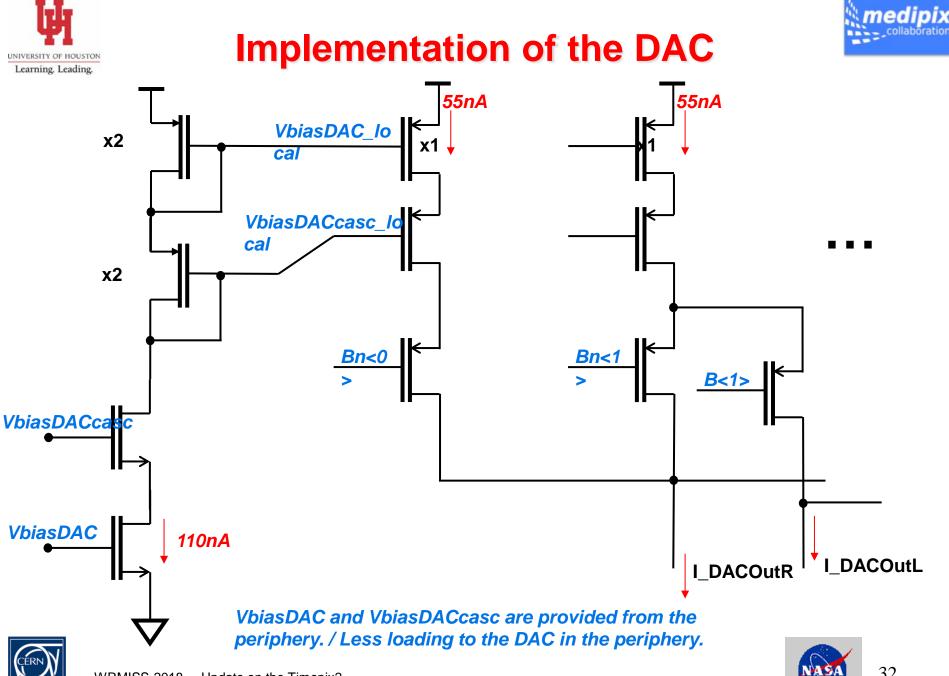
> © L. Pinsky 2016

WRMISS-2018 – Update on the Timepix2 Pinsky – Sept. 6, 2018 – Tsuruga, Japan 27


Schematics (For the EE's in the audience)




Differential amplifier Unity gain buffer Adaptive gain can be disabled



29

