Real-Time Estimation of Astronaut Doses During Large Solar Particle Events Based on WASAVIES

Authors

OT. Sato, Japan Atomic Energy Agency (JAEA)

- R. Kataoka, National Institute of Polar Research (NIPR)
 - D. Shiota, NICT
 - Y. Kubo, NICT
 - M. Ishii, NICT
 - H. Yasuda, Hiroshima Univ.
 - S. Miyake, National Institute of Technology, Ibaraki College Y. Miyoshi, Nagoya Univ.
- H. Ueno, JAXA
- A. Nagamatsu, JAXA

Project for Solar Terrestrial Prediction (PSTEP) http://www.pstep.jp

WRMISS-23, Fukui, Sep. 4-6, 2018

- Background & Outline
- Development of WASAVIES
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Development of WASAVIES-EO
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Summary

Background

Evaluation of cosmic-ray fluxes in the magnetosphere

- Risk of astronauts in spacecrafts due to radiation exposure
- Soft-error rates of semi-conductor devices loaded on satellites

Sources of cosmic-rays

- Galactic cosmic-ray (GCR)
- Trapped particle (TP)

- Rather stable and predictable

(DLR model, BO model, AP-9 etc.)

• Solar energetic particle (SEP)

Hardly predictable in the mission design stage

- Worst-case scenarios (Xapsos et al. 1999 etc.)
- Post-exposure evaluation (Hu et al. 2016, Matthiä et al. 2018)
- Real-time estimation (Mertens et al. 2018)
- Forecast (No method is available)

- Background & Outline
- Development of WASAVIES
 ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Development of WASAVIES-EO
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Summary

How to Estimate SEP Dose?

Precise Estimation

- Interplanetary space: 3D MHD simulation for each event
- Magnetosphere: Proton trace simulation with dynamic MF model
- Atmosphere: Monte Carlo airshower simulation

too time consumptive & complicated

WASAVIES

We developed databases based on...

- 1D focused transport equation from the Sun to the Earth
- Proton trace simulation inside magnetosphere with static MF model
- Airshower simulation for mono-energetic SEP incidence

IP, γ , $\theta_{\rm p}$, N_0 are automatically determined during GLE in real time

- Background & Outline
- Development of WASAVIES
 ✓ Calculation procedure

✓ Validation

- ✓ Results of dose calculation
- Development of WASAVIES-EO
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Summary

Profiles o	f analy	yzed e	vents
-------------------	---------	--------	-------

	GLE60	GLE69	GLE70	GLE71	GLE72
Flare class	X14.4	X7.1	X3.4	X5.1	X8.2
Date, Year	Apr 15, 2001	Jan 20, 2005	Dec 13, 2006	May 17, 2012	Sep 10, 2017
Maximum NM increase rate	~200%	~2000%	~90%	~15%	~15%
Anti-isotoropy	No	Yes	No	No	No

NM Count Rates

Comparison between measured and calculated count rates of some NM stations

Good agreement!!

Measured data taken from NMDB (http://www.nmdb.eu/)

GOES proton flux (E>100MeV)

Validation with Flight-Dose Measurements

WASAVIES can reproduce the experimental data very well!

- Background & Outline
- Development of WASAVIES
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Development of WASAVIES-EO
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Summary

Dose Rate at Conventional Flight Altitude

Comparison of GCR and SEP dose rates at the highest dose locations at 12 km

 \checkmark D_{SEP} > D_{GCR} at the beginning of GLE 60 & 69

 $D_{SEP} < D_{GCR}$ during entire GLE 70 \rightarrow Safety of aircrews due to SEP exposure

Dose Rate Map at the Peak of GLE69

North-South asymmetry is clearly observed
 Dose estimation based only on cut-off rigidity is not accurate enough

- Background & Outline
- Development of WASAVIES
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Development of WASAVIES-EO
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Summary

Flowchart of WASAVIES-EO

WASAVIES-EO starts after all analyses of WASAVIES are finished, based on TLE data

Virtual ISS

Virtual ISS model developed by JAXA

- Manually constructed from 2D CAD data (different from Goto-san's one)
- Experimental racks in the Kibo module are reproduced
- Other modules are simply reproduced by their shapes and masses
- Mean shielding thickness in the pressurized module of Kibo is 35.6 g/cm^2
- Response functions in 16 locations in the Kibo module are calculated

- Background & Outline
- Development of WASAVIES
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Development of WASAVIES-EO
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Summary

Profiles of ana	lyzed events
-----------------	--------------

	GLE60	GLE69	GLE70	GLE71	GLE72
Flare class	X14.4	X7.1	X3.4	X5.1	X8.2
Date, Year	Apr 15, 2001	Jan 20, 2005	Dec 13, 2006	May 17, 2012	Sep 10, 2017
Maximum NM increase rate	~200%	~2000%	~90%	~15%	~15%
Anti-isotoropy	No	Yes	No	No	No

DOSTEL in US Laboratory

Dose rates measured by Si detector (DOSTEL) in ISS US Laboratory

- ✓ WASAVIES-EO can reproduce GCR dose rates very well
- SAA peaks are not reproduced because TP contribution was not considered
- \checkmark Dcal < Dexp slightly at the SEP peak \rightarrow difference of shielding configuration

*Reitz et al. 2005, Berger et al. 2018

Liulin-5 in MATROSHKA-R in Russian Module

Dose rates measured by Si detector (Liulin-5) in MATROSHKA-R phantom in Russian module of ISS

DOSTEL in Columbus

Dose rates measured by Si detector (DOSTEL) in ISS Columbus module

 ✓ Dcal > Dexp at the SEP peak → difference of shielding configuration or overestimation of low-energy SEP fluxes (E<80MeV)

Proton fluxes measured in POES

Proton fluxes above 100 MeV measured in POES satellite during GLE 72

WASAVIES-EO can reproduce the data except for early stage

Applicable to not only ISS but also other satellites

- Background & Outline
- Development of WASAVIES
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Development of WASAVIES-EO
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Summary

Nowcast radiation doses

Effective dose at flight altitude and astronaut dose equivalent in ISS during GLE 69 and 70

> Peak of astronaut doses does not always much with GLE peak

GLE 70 occurred at the worst timing

Forecast radiation doses

- Background & Outline
- Development of WASAVIES
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Development of WASAVIES-EO
 - ✓ Calculation procedure
 - ✓ Validation
 - ✓ Results of dose calculation
- Summary

Summary

- WASAVIES-EO was developed for nowcasting and forecasting the GCR and SEP fluxes inside and outside any satellites on Earth Orbit
- The accuracy of WASAVIES-EO, was well validated by dose rates measured in ISS & high-energy proton fluxes observed by POES
- Web-interface of WASAVIES is currently under development, and that of WASAVIES-EO will be developed later

In near Future...

Website of WASAVIES for issuing SEP exposure alert via NICT server

