

RADIATION PROTECTION PROPERTIES OF ADDITIONAL SHIELDING CONTAINING HYDROGENE MATERIALS INSTALLED IN CREW CABIN OF RUSSIAN SEGMENT OF ISS

Raisa Tolochek¹, Vyacheslav Shurshakov¹, Igor Nikolaev², Satoshi Kodaira³, Hajime Kawashima³, Yukio Uchihori³, Iva Ambrozova⁴

> ¹ Institute of Bio-Medical Problems, RAS, Moscow, Russia ² RSC-Energia, Korolev, Moscow Region, Russia

³ National Institutes for Quantum and Radiological Science and Technology,

Chiba, Japan

⁴ Nuclear Physics Institute, Academy of Sciences of Czech Republic, Prague,

Czech republic

福井大学 附属国際原子カエ学研究所
原子力防災・危機管理部門
TSURUGA, JAPAN
WRMISS 2018

Participants of the current project

- · IBMP, Russia (TLD)
- · NPI, Czech republic (TLD, PNTD)
- · QST NIRS, Japan (TLD, PNTD)
- · CER HAS, Hungary (Pille-ISS)
- · BTI, Canada (BUBBLE detectors)

Introduction: Crew cabin shielding characteristic

Protective curtain thickness is estimated to be **6.3** g/cm² Crew cabin outer wall thickness is estimated as ~ **1.5** g/cm² (2 Al layers with 2 mm thickness (0.4 cm * 2.7 g/cm³ = 1.08 g/cm²) + also an additional shielding of the anti-meteorite protection (outside) and the cabin interior cover (inside))

Protective curtain design

Mass, kg

14,600

25,600

24,000

64,200

Estimated thickness: 6.3 - 6.5 g/cm2

Hygenic wipes 1 and towels

Tissue bag containing 4 layers of hygienic wipes and towels

> Photo of protective curtain made during pre-flight preparations (Baikonur, Kazakhstan, 2010)

Measuring instruments Passive detector packages containing thermoluminescent detectors (TLD) and nuclear track detectors (PNTD) have been used as a main measuring instrument.

Detector kit – flight model

Detectors: TLD, SSNTD

Participants: NPI, QST/NIRS, IBMP

12 passive detectors packages +1 background control

PHOTOS MADE ONBOARD ISS

Spherical phantom in the same location (2004-2005 yy)

Flight Data

PNTD and TLD detector packages were exposed during 7 sessions:

session#	Start	End	Duration, days		ISS mission#	
1	16.06.2010	26.11.2010	163	SOYUZ TMA-19	24/25	
2	15.12.2010	24.05.2011	160	SOYUZ TMA-20	25/26	
3	21.06.2011	27.04.2012	311	Progress M-11M/	27/20	
				SOYUZ TMA-22	27/30	
4	15.05.2012	19.11.2012	188	SOYUZ TMA-04		
				M/	31/32	
				SOYUZ TMA-05 M		
5	26.09.2013	11.03.2014	166	SOYUZ TMA-10M	37/38	
6	27 03 2015	18 02 2016	328	SOYUZ TMA-16M/	13/16	
0	21.00.2010	10.02.2010	SOYUZ TMA-18		40/40	
7	13.09.2017	28.02.2018	168	SOYUZ MS-06	53/54	

Results: Absorbed dose rate time dynamic (TLD, IBMP)

ISS parameters: flight altitude

Geomagnetic parameters: W (Wolf number)

Results: Equivalent dose measurements (TLD+ SSNTD, NIRS)

Passive detector packages comparison

Dose Spatial Distribution (IBMP)

Difference in resilts by NPI, QST NIRS, IBMP groups: 5% (1 session), 8% (2 session), 9% (3 session)

Dose vs thickness of shielding material

#2, #4, #10, #12 – packages installed on the wall (~1.5 g/g/cm²)

#7, #8 – packages installed on the illuminator (glass ~ 5 g/g/cm²)

#1, #3, #9, #11 – packages installed on protective curtain (\sim 7.8 g/g/cm², wall + protective curtain)

#5, #6 – packages installed on the protective curtain at middle section (~11.3 g/cm^2 , glass + protective curtain)

thickness, g/cm2

Results: Efficiency (D, IBMP)

# pack.	Ratio Dnshielded/ Dshielded, average for all time	K, %
2/1	1,72 ± 0,17	41± 6
4/3	1,67 ± 0,13	40± 5
7/5	1,21 ± 0,08	17± 5
8/6	1,23 ± 0,07	19± 4
10/9	1,50 ± 0,17	32± 7
12/11	1,54 ± 0,13	35± 7

 $K = (1 - D_{shielded} / D_{unshielded}) * 100\%$

— «illuminator» effect: thickness is 5 g/cm²

Results: Quality Factor

Spatial Distribution (averaged for all sessions)

Time dynamic (averaged for all packages means)

	# package	<q></q>		
	1	2,30	# session	$\langle Q \rangle$
	2	2,25	1	2,5
	3	2,34		,
	4	2,24	2	2,1
for different	⇒ 5	2,08		
essions may	6	2,10	3	2,0
ary up to 30%	7	2,04		
	8	1,98	5	1,9
	9	2,05	K	
	10	1,91		
	11	2,13		Q spatial distribution
	12	2,04		session may vary up 1 60%

Preliminary Calculations for High Density Polyethylene

2014.

= 17 - 50 % for experimental data)

 $K = (1 - D_{shielded}/D_{unshielded}) * 100\%$

23 % for experimental data)

K = 22 - 38 % for packages on the illuminator and the protective surface (K = 5 - 38)

Points of calculation

Protective curtain

Conclusions

- The special facility for additional shielding of the crew cabin and detector arragement have been used from 2010 onboard ISS for more 8 years.
- The unshielded- shielded absorbed dose ratio can vary from 1.13 to 1.91 (or from 12% to 48%) and depend on shielding conditions.
- Quality factor was measured. The data shows that quality factor varies from 1,78 (pack # 9 located on protective curtain surface, 5 session) up to 3.5 (pack #4 located on the wall, 1 session). Quality factor may vary significant depending on shielding conditions and flight factors like altitude, solar activity, etc.
- Protective curtain mostly effective against protons, increase of altitude increases its efficiency. Increasing sun activity reduces GCR flux, thus decreasing quality factor.
- New calculation for new design using polyethylene bricks instead water-containing hygenic materials are in process.

THANK YOU!

Resilts: Ratio of unshielded and shielded detectors

Thank you for your attention!

Publications. Sato, T., Niita, K., Shurshakov, V.A., Yarmanova, E.N., Nikolaev, I.V., Iwase, H., Sihver, L., Mankusi, D., Endo, A., Matsuda, N., Iwamoto, Y., Nakashima, H., Sakamoto, Y., Yasuda, H.,

Takada, M., Nakamura, T., 2011. Evaluation of dose rate reduction in a spacecraft compartment due to additional water shield. Cosmic Res. 49, 319–324.

P. Szanto et al. Onboard cross-calibration of the Pille-ISS Detector System and measurement of radiation shielding effect of the water filled protective curtain in the ISS crew cabin. Radiation Measurements 82 (2015) 59-63

Ploc O., Sihver L., Kartashov D., Tolochek R., Shurshakov V.."PHITS simulations of the Protective curtain experiment onboard the Service module of ISS: Comparison with absorbed doses measured with TLDs". Advances in Space Research 52, 2013. c. 1911–1918.

Д.А. Карташов, Р.В. Толочек, В.А. Шуршаков, Е.Н. Ярманова. Расчет радиационных нагрузок в отсеке космической станции при использовании дополнительной защиты. Авиакосмическая и экологическая медицина, 2013, т. 47, No 6, стр. 61-66.

M.B. Smith et al. BUBBLE-DETECTOR MEASUREMENTS IN THE RUSSIAN SEGMENT OF THE INTERNATIONAL SPACE STATION DURING 2009-12. Radiation Protection Dosimetry (2014), pp. 1-13